Improvement of Rule Generation Methods for Fuzzy Controller

نویسندگان

  • V. Derhami Department of Computer Engineering, Yazd University, Yazd, Iran.
چکیده مقاله:

This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to improvement the above challenge. A zero order Sugeno fuzzy model used as fuzzy system structure. At first by using clustering obtains the number of rules and input membership functions. A set of candidate amounts for consequence parts of fuzzy rules is considered. Considering each pair of training data, according which rules fires and what is the output in the pair, the amount of probability of consequences candidates are change. In the next step, eligibility probability of each consequence candidate for all rules is determined. Finally, using these obtained probability, two probable outputs is generate for each input. The experimental results show superiority of the proposed approach rather than some available well-known approaches that makes reduce the number of rule and reduce system complexity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

design of an analog fuzzy logic controller chip

fuzzy logic has been developed over the past three decades into a widely applied techinque in classification and control engineering. today fuzzy logic control is one of the most important applications of fuzzy set theory and specially fuzzy logic. there are two general approachs for using of fuzzy control, software and hardware. integrated circuits as a solution for hardware realization are us...

15 صفحه اول

Association Rule and Decision Tree based Methods for Fuzzy Rule Base Generation

This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the...

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Automatic Numerical Rule Generation for Fuzzy Controller from Sensor Data by a Modified GA-based Method

A method is proposed to automatically extract numerical control rules from the sensor data without the help of experts by means of a Genetic Algorithms(GA) , which add a different bit crossover operator to the standard GA in order to increases the diversity of individuals and reduce the opportunities of falling into local optima. Every generated numerical rule is accumulated in a control table ...

متن کامل

A FUZZY-BASED SPEED CONTROLLER FOR IMPROVEMENT OF INDUCTION MOTOR'S DRIVE PERFORMANCE

Induction motors (IMs) are widely used in many industrial applications due to their robustness, low cost, simplicity and relative good efficiency. One of the major considerations for IMs is their speed control. PI (proportional-integrator) controllers are usually used as speed controller. Adjusting the gain of PI controller is time-consuming which needs thorough considerations. Hence, fuzzy con...

متن کامل

Rule Generation for Hierarchical Fuzzy Systems

In this paper a new method of rule generation for hierarchical fuzzy systems (Hierarchical Fuzzy Associative Memory, HIFAM) is described. A HIFAM is structured as a binary tree and overcomes the exponential growth of the rulebases when the number of inputs increases. The training algorithm for HIFAM is suited for approximation and classification problems. Several benchmarks demonstrate that the...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 1

صفحات  49- 54

تاریخ انتشار 2020-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023